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Abstract 
The Expert Systems Validation Associate (EVA), a validation system under development at the Lockheed 
Artificial Intelligence Center for more than a year, provides a wide range of validation tools to check the 
correctness, consistency and completeness of a knowledge-based system. 

Using a declarative meta-language (hgher-order language), we want to create a generic version of EVA 
to validate applications written in arbiirary expert system shells. 

In this paper we outline the architecture and functionality of EVA. The functionality includes Structure 
Check, Logic Check, Extended Structure Check (using semantic information), Extended Logic Check, 
Semantic Check, Omission Check, Rule Refinement, Control Check, Test Case Generation, Error 
Localization, and Behavior Verification. 

.- INTRODUCTION 
The glowing reliance on knowledge-based systems (KBS's) in in- 
dustry, business and government requires the development of ap- 
propriate methods and tools to validate such systems to ensure 
their correctness, consistency and completeness. Furthermore, as 
these systems become operational, an increasing number of 
knowledge engineers will be involved in their development and 
maintenance. Hence, insuring the integrity of a particular KBS over 
its entire life cycle makes the need for automated validation even 
more crucial. 

Early attempts at validating KBS's did not progress beyond basi- 
cally "syntactic" validation [Nguyen et al. 1985, Nguyen 1987, 
Reubenstein 1985, Suwa et al. 1982). Significantly more ad- 
vanced validation tools are being built at the Lockheed AI Center 
using semantic information and meta-knowledge for KBS valida- 
tion [Stachowitz et al. 1987a, 1987bI. 

The system under development is called the Expert Systems 
Validation Associate (EVA). Our goal is to create a generic version 
of EVA whch can validate applications written in arbitrary expert 
system shells, such as ART', KEE", OPS5. and others, by map- 
ping an application written in any specific shell into internal data 
structures In a general and declarative meta-language (higher- 
order language). 

The purpose of EVA is to imp1 ve the validation process by finding 
mistakes and omissions in tKe knowledge base, by proposing 
knowledge base extensions and modifications, and by showing the 
impact of changes to the knowledge base. In other words, EVA 
addresses not only the question "Is a KBS application correct?", 
but also the question "Is the knowledge used by the expert for the 
application correct?" 
In this paper, we outline the architecture and functionality of EVA. 
The functionality includes structure check, logic check, extended 
structure check (using semantic information), extended logic 
check, semantic check, omission check, rule refinement, control 
check, test case generation, error localization, and behavior 
verification. 

EVA ARCHITECTURE 
To permit the addition of future functionality EVA is designed to be 
a metaknowledge-based system shell. All the validation modules 
(checkers) will be built on a unifying, extensible platform. The 
unifying architecture will be based upon: (a) A single user interface 

'Automated Reasoning Tool, Inference Corporation 

Knowledge Engineering Environment, IntelliCorp 
.. 

for all checkers; (b) A single meta-knowledge base for all check- 
ers; and (c) A common meta-language for specifying constraints. 
The advantages of the architecture are uniformity and extensibility. 

We intend to implement all the checkers in Quintus Prolog 
[Quintus 19851. That is, information about an application 
represented in a knowledge base, algorithms for the checkers, and 
domain knowledge will be represented by clauses in Quintus 
Prolog. Then, invoking a checker is essentially comparable to 
entering a goal (query) in Quintus Prolog. Our selection of Prolog 
is based on the following considerations: 

(1) The validation of KBS's requires extensive automatic 
theorem proving facilities such as a unification subroutine. 
Prolog has a built-in automatic resolution-based theorem 
prover. By using Prolog we can expedite the development of 
EVA. 
(2) Maintaining the meta-knowledge base requires the 
functionality of a database management system. Prolog 
provides a built-in database management system, whch makes 
it unnecessary to develop such functionality separately. 
(3) The meta-language required for representing validation 
criteria as meta-statements can be defined and implemented in 
Prolog. This malces it unnecessary to develop a separate 
abstract machine to interpret this meta-language. 

EVA FUNCTIONALITY 
The functionality of EVA, represented by means of a data flow 
diagram, is depicted in Figure 1. 

An application is written in an object shell, while validation state- 
ments for semantic and control constraints. and behavior descrip 
tions are written in a very expressive metashell (meta-language). 
The metashell will provide many higher-order constructs to support 
high-level predicates such as symmernc, nonsymmetnc, transitive, 
nontransitive, reflexive, irreflexive, mandatory, synonymous, com- 
patible, incompatible, etc. 

An analyzer uses conversion algorithms to translate the applica- 
tion and the validation statements into the format to be used by the 
EVA validation modules; each of which performs a static or 
dynamic analysis of the application. The analyzer will build a con- 
nection graph from facts and rules in the application. An arc in the 
connection graph denotes a match between a literal in the LHS 
(Left-Hand Side) of a rule and a literal in the RHS (Right-Hand 
Side) of a rule. Note that a fact is considered as a rule consisting 
of a RHS only. 

For static analysis, EVA will provide the structure checker, logic 
checker, extended structure checker, extended logic checker, 
semantics checker, omission checker, rule refiner and control 
checker. For dynamic analysis, EVA will provide the test case gen- 
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erator, error locator and behavior verifier. The validation objec- 
tives and functionality of EVA are shown in Figure 2. 

Using ART and LISP, we have implemented prototypes of thc 
structure checker, logic checker and semantic checker for ART- 
based expert systems. We have also implemented considerable 
portions of the structure checker and extended structure checker 
in Ouintus Prolog. Other modules, and more elaborate functions 
for the structure checker, logic checker and semantics checker are 
being designed and will be implemented in the future. 

We now give detailed descriptions of the EVA modules as follows: 

STRUCTURE CHECKER 
As discussed before, a knowledge base can be represented by a 
connection graph. That is, the connection graph basically shows 
the struclure of the knowledge base. The purpose of the structure 
checker is to detect any anomalies in the connection graph. For 
example, it will identify rules and facts which will never be used, 
rules which are superfluous, and rules which possibly lead to an 
infinite loop. 

Reachability 

One type of "common" error is the use of an undefined lieral in the 
LHS of a rule. This may occur in top-down and bottom-up 
specifications. In the top-down approach, the specifier starts with 
the highest modules, planning to define the lower modules after- 
wards. However, he may forget them. Therefore, they are left un- 
defined. In the bottom-up approach, the lower modules are defined 
first. However, when the specifier tries to use them, he may type 
the module names incorrectly. 

A LHS literal may be undefined because either its predicate is not 
defined or it cannot be unified with any RHS literal. In terms of the 
connection graph, a literal is undefined if it is not pointed to by any 
arc. 

Another type of related anomaly is the case where RHS literals are 
notJinked to any LHS literals. That is, they are defined but not 
used. They are called "unreachable" literals. The presence of the 
unreachable literals may indicate some anomalies, namely, omis- 
sions. This is analogous to the experience we have with repairing 
a car. We may disassemble a carburetor. However, when we put 
the parts back again, we may find some parts are left unused. 
In terms of the connection graph, a RHS literal is unreachable if 
there is no arc going from Il to another literal. 

Redundancy 

The types of redundancies the structure checker will check are 
duplications and subsumptions. The duplication and subsumption 
Checks can be done by the same algorithm because duplication is 
a special case of subsumption. 

Given two rules R1 and R2, if the LHS of R1 subsumes the LHS of 
R2, then whenever R2 can be fired R1 also can be fired. There- 
fore, any actions in the RHS of R2 which also occur in the RHS of 
R l  can be eliminated. If after the elimination no actions are left in 
the RHS of R2, then R2 can be eliminated. 

The following are examples of duplication and subsumption: 
Duplication: 
male()() A parent(X) +father(X). 
parent(Y) A male(Y) +father(Y). 
Subsumption: 
tenured()() A -staff(X) +university-member(X). 
tenured()() + university-member()(). 

Qc& 

In a knowledge base, cycles will m r  if recursive rules are used 
to define predicates. Some cycles are harmless, while others 
cause problems. EVA will identify "potentially bad" cycles. 

First, we consider the case where rules are used to define predi- 
cates [Chang 1976, 1978, 19811. A predicate is called a basic 
predicate if it is used only for representing facts. A predicate is 

called a derived predicate if it is defined in terms of basic predi- 
cates, or in terms of basic and derived predicates by a rule or a Set 
of rules. For example, the prediite "ancestor" may be defined in 
terms of the basic predicate "parent" as follows: 

parent(X,Y) -+ ancestor(X,Y). 
parent(X,Y) A ancestor(Y,Z) -+ ancestor(X,Z). 

The first rule is a terminating rule and the second rule is a recur- 
sive rule. If the terminating ple  is not given by the developer, it will 
cause the second rule to fire repeatedly, ie., result in an infinite 
loop. Therefore, if EVA finds that cycles of rules are used to 
define a derived predicate, it will try to check whether terminating 
rules are given. 

Second, we consider the case where rules are used to establish 
equivalent predicates. For example, consider the following rules: 

human()() +person(X). 
person()() +human(X). 

These two rules result in a cycle. However, the developer may 
intend to show that predicates "human" and "person' are equiv- 
alent or synonymous. In this case, he should choose one of the 
predicates as the standard predicate and delete one of the rules. 
Finally, we consider the case where a cycle (loop) is used to per- 
form a repeated task in a distributed or non-distributed environ- 
ment. In this case, cycles are allowed. 

EVA will also check if a knowledge base contains overlapped 
cycles (loops) [Chang 19781. A knowledge base with overlapped 
cycles is less modularly structured than one without any over- 
lapped cycles. Since we can always represent a knowledge base 
without using overlapped cycles, we should enforce this software 
methodology. This is analogous to structured programming where 
(since only single-entry and single-exit statements are allowed) 
loops are well structured in structured programs. 

LOGIC CHECKER 
The logic checker checks if at some particular time inconsistent or 
conflicting actions can be triggered by facts in a knowledge base. 

For example, consider the rules: 
big(X) -+expensive()(). 
bg(Y) + -expensive(\(). 

If the fact 

is in the knowledge base, then the rules will assert the inconsistent 
facts: 

big(trUCk) 

expensive(truck). - expensive(truck). 
On the other hand, consider the iules: 

new()() A bg(X) -+expensive(X). 
bmken(Y) A big(Y) + -expensive(Y). 

Depending upon what setaf facts exists at a particular time, these 
two rules may or may not assert inconsistent facts. For example, if 
we only have the fa& 

new(truck1). 

big(truck2). 
bQ(tNck1). 

brokeIl(truck2). 
then the rules will assen the facts 

expensive(truck1). 
expensive(truck2). 

which are not inconsistent. However, if we only have the facts 
new(truck1). 
big(trudci). 
broken(truck1). 

expensive(truckl). - expensive(truck1). 

then we will get inconsistent facts: 
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The question is whether such a set of facts is ever possible. If the 
developer thinks it is impossible that an object can be SimUl- 
taneOUSly new, big and broken, then the inconsistency m y  not 
arise. Otherwise, he should be warned. Note that to make sure 
that a certain set of facts is impossible, the knowledge base will be 
verified by the semantic checker to be discussed later. That is, the 
knowledge base will contain "negative" semantic constraints to be 
used by the semantic checker. For the above example, the nega- 
tive constraint is represented as 

Given a set S of rules, the bgic checker finds if there exists a set T 
of facts that may lead the rules in S to generate inconsistent facts. 
If such a set T exists, the validation system will prompt the 
developer if T is possible. If he says that T is impossible, a cor- 
responding negative constraint will be added into the knowledge 
base. 

EXTENDED STRUCTURE CHECKER 

The extended structure checker checks for reachability, redun- 
dancy and cycles caused by generalization hierarchy or 
synonymy. 

Most expert system shells support generalization hierarchy based 
upon the subclass relationship "isa". For example, if 

then "submarine" may not be undefined if "ship" is defined, and 
'ship" may not be unreachable if "submarine" is used in a LHS- 
literal of a rule. 

Similarly, generalization hierarchy can affect the redundancy and 
cycle properties of a knowledge base. For example, given the 
N l e S  

incompatible( new(X), bii(X), broken()() ). 

submarine Isa ship, 

subrnarine(X) +launch(>(). 
ship()() +launch()(). 

clearly the second rule subsumes the first one. 

Now, let us consider synonymy. An expert system may be 
developed by more than one person. Different persons may use 
diierent schemas (names or structures) for the same type of ob- 
jects. When their knowledge is merged, some standard should be 
established. EVA will provide the meta-language to map the 
schemas into a standard schema by using rules. For example, if 
"sub" and "submarine" are synonymous, and if we choose 
"submarine" to be the standard name, then the mapping rule is 
given as 

Mapping rules map a slot or a function of many slots into a stan- 
dad sbt. For example, the slots "year" and "dateof-birth" may be 
mapped into the sbt 'age". This mechanism is similar to "view" 
definitions in a relational data base. 
Once the standard schemas are established, the functionality of 
the extended structure checker for the knowledge base is essen- 
tially the same as the functionally of the structure checker for the 
knowledge base appended by the mapping rules. 

EXTENDED LOGIC CHECKER 

The purpose of the extended kgii checker is to check for incon- 
sistencies and conflicts caused by generalization hierarchy, incom- 
patibiltly, or synonymy. If the application contains rules that can 
derive contradictory conclusions from the same set of facts with 
the properties of generalization hierarchy, incompatibility, or 
synonymy, then the application is inconsistent. 

Inconsistency Under Generalization Hierarchy 

Given the metafact that submarine is a subclass of ship, rules 8 
and 9 are inconsistent. 

sub()() +submarine()(). 

Rule 8: E()() A F(X) + -ship(>(). 
Rule 9: E(Y) A F(Y) +submarine(Y). 

Inconsistency Under Incompatibility 

Given the metafact that boyand girlare incompatible, rules 10 and 
11 are inconsistent. 

Rule 10: A(X) A B(X)+boy(X). 
Rule 11 : A(Y) A B(Y) A C(Y) + girl(Y). 

Inconsistency Under Svnonymy 

Given the metafact that submarine and sub are synonymous, rules 
12 and 13 are inconsistent. 

Rule 12: E()() A F(X)+submarine(X). 
Rule 13: E(Y) A F(Y)+ -$ub(Y). 

In each of the above examples, the conditions in each of the rule 
pairs are exactly the same or one condition is a proper subset of 
another. However, the inconsistency can occur in a more general 
case. The examples below are in confllct if all of the facts A@), 
B(e), C(e), and D(e) are present in the knowledge base at the 
same tlme. 

Conflict Under Generalization Hierarchy 

Given the metafact that submarine is a subclass of ship, rules 14 
and 15 are in conflict. 

Rule 14: A(X) A B(X)+ ,ship(X). 
Rule 15: C(Y) A D(Y)+submarine(Y). 

Given the metafact that boy and girlare incompatible, rules 16 and 
17 are in conflict. 

Rule 16: A()() A B(X)+boy(X). 
Rule 17: C(Y) A D(Y) +girl(Y). 

Conflict Under Synonymy 

Given the metafact that submarine and sub are Synonymous, rules 
18 and 19 are in conflict. 

Rule 18: A(X) A B(X)+ +ub(X). 
Rule 19: C(Y) A D(Y)+submarine(Y). 

If the conditions A(X), B(X), C(X), and D(X) can be satisfied by 
future facts in the application (recognized from assertions in the 
RHS of rules), the bgic checker warns of potential cunflict. 

The extended bgic checker will use an algorithm similar to the one 
used by the m i c  checker. The extended logic checker will first 
choose a goal consisting of a complementary pair of RHS literals 
or a set of Incompatible RHS literals. It will then try to find a set of 
facts from the goal by performing unifications and substitutions on 
literals, using rules in the knowledge base as rewriting rules. 

EVA provides the meta-predicate "incompatible" for the developer 
to specify a set of incompatible literals. It has the following struc- 
ture 

where L1 ,..., Ln are literals for n equal to 1 or more. The meaning 
of this statement is that the conjunction of L1, ..An can not be true 
at any time. Incompatible statements are interpreted as "negative 
constraints.. In a knowledge base or meta-knowledge base, there 
are general and domain-specific negative constraints. The follow- 
ing are some examples of incompatibility statements: 

means that an atomic formula A and its negation are incompatible. 
Note that A may contain a firstorder or higherorder predicate. 

(2) incompatible( assert()(), retract(X) ) 
means that asserting and retracting the same fact at the same 
time are incompatible, where X is a literal. 

incompatible(L1 ,..., Ln), 

(1) incornpatile( A, -A)  

(3) incompatible( add(O,S,Vl), delete(O,S,V2), 
single-value(0,S) ) 

means that adding a value V1 to a slot S of an object 0 and delet- 
ing a value V2 from the same slot of the same object are incom- 
patible if the slot is a single-valued slot. 

(4) incompatible( modify(O,S,Vl), delete(O,S,VP), 
single-value(0,S) ) 

means that modifying the value of a slot S of an object 0 to V1 
and deleting a value V2 from the same slot of the same object are 
incompatible if the slot is a single-valued slot. 
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(5) incompatible( room(X), in(john,X), in(mary,X) ) 
means that for a particular application we have the negative con- 
straint "John and Mary can not be in the same room". 

means that an object X can not be on itself. 
SEMANTICS CHECKER 

The semantics checker has two major functions: cnecking facts in 
a knowledge base of an application written in the object shell for 
violations of the semantic constraints, and checking the semantic 
c6nstraints themselves for internal consistency and agreement 
with other metaconstraints represented in the metashell. 
We can have "positive constraints" and "negative constraints". The 
facts in the knowledge base must satisfy the former, but must not 
satisfy the latter. The constraints will be stated by using the meta- 
predicates of the meta-language. A negative constraint can be 
represented by using the meta-predicate "incompatible" as dis- 
cussed before. Some of the metapredcates (rneta-relations) for 
specifying positive constraints such as range constraints, 
minimum/maximum cardinality constraints, legal value constraints. 
value compatibility constraints, subrelations, inverses, data types, 
etc. are shown below: 

(6) incompatible( on(X,X) ) 

(1) bwer-upper(slot, class, lower, upper) 
This metarelation defines the legal range of numerical values: the 
values for the <slot> of the <class> must be between <lower> and 
cupper>. EVA discovers and flags values that exceed these 
bounds. 
EVA not only checks facts against semantic constraints, but also 
checks that the semantic constraints themseives are consistent. 
Since a "child" is a "person", the age range of "child" must fall 
within the age range of "person". Thus the following semantic 
constraints would be inconsistent. 

is-a( child, person ) 
kwer-upper( age, person, 1,110 ) 
lower-upper( age, child, 0,12 ) 

(2) Iogal-veluo(8lot, class, values) 
This metarelation defines the legal values of a slot: the values for 
the c s b b  of the <class> must be l i e d  in <values>. 

Fqr example, the folbwing semantic constraint 
legal-value( gender, student, [male,female,hermaphrodite] ) 

states that the gender of a student must be male, female, or her- 
maphrodite. EVA flags any "student" record where "gender has a 
nonlegal value. 

(3) mbn( mf(domalbl ,..., domaln-n) ) 
This metarelation defines both the number of legal arguments of a 
relation <reb and the legal data type of each argument; <domain- 
is is either a class of objects or a set of values for i-1 ,..., n. 
This kind of semantic constraint is used to permit EVA to enforce 
strong data-type checking for relations. 
For example, given the two facts 

and 

and the metafact 
relation( murderer-of(person,pemn) ) 

EVA flags as erroneous the fact 
murderer-of(chadie,snoopy). 

Another example of constraints 
relation( enmH(freshman,{mathlOl,englishlOl, ...)) ) 
relatkn( enroU(sophomore,(math201 ,mol ,...)) ) 

person(charli) 

dog(sno0PY) 

states that a freshman can only enroll in MathlOl, EnglishlOl, ... 
that a sophornore can only enroll in Math201, Art201, ..., and so 
on. 

(4) mln-max-rel(relatlon, domain, mln, max) 
This metarelation specifies the minimum and maximum number of 
tuples (records) of a relation: the number of records of <relation> 
with object in <domain> must be between <min> and <max>. 

For example, the following semantic constraint 

means that up to 5000 student enrollments are allowed in the data 
base at any one time. The enrollments are represented by 
records or tuples of the relation "enroll". 

(5) mln-maw-role(nlation, domaln, mln, maw) 
This metarelation defines that each object in <domain> must have 
at least cmin> and at most <max> objects for the relation 
<relation>. 
Thus the semantic constraint 

states that each sophomore must enroll in at least 3 and at most 4 
courses. EVA flags any sophomore who enrolls in fewer than 
three or more than four courses. 

(6) subrelatlon(relatlon1, nlatbn2) 
This metarelation defines that <relatiinl> is a subrelation of 
crelation2>. EVA checks that the number of arguments for 
crelationb is greater than or equal to the one for <relation2>, and 
that the data types of the arguments of crelatbnlr are subclasses 
of the corresponding arguments of <relation2>. 
For example, EVA determines that the semantic constraints 

min-max-rel( enroll, student, 0,5000 ) 

min-max-role( enroll, sophomore, 3,4) 

relation( killer-of (animate-obj, animate-obj) ) 
relation( murderer-of (person,thing) ) 
subrelation( murderer-of, killer-of) 

are inconsistent since the second argument "thing" of 
"muraerer-of" is not a subclass of the second argument 
"animate-obj" of "killer-of". 
EVA also checks that the inverse of <relatiinl> is a subrelation of 
the inverse of <relationb, and creates the missing inverse of a 
subrelation, if one does not exist. 

Cur meta-language will also permit the developer to define 
properties of predicates or relations, such as transitive, nom 
transitive, symmetrk, non-symmetric. reflexive, irreflexive, 
antonymous (male-female, ie., non-male implies female and vice 
versa), contrary (youngold, ie., non-young does not imply old), 
etc. 

OMISSION CHECKER 
Knowledge can be orghred around the concept of set, eg., a 
class of objects, a class of relations, a class of rules, and a set of 
values for a multi-value slot. Given a set written by the developer, 
the basic question to ask is "Is the set complete?". In other words, 
does the set contain all the necessary elements or lack some ele- 
ments? The goal of the omission checker is to answer this ques- 
tion by investigating and Mentlfying useful techniques and 
representations for defining completeness of a knowledge base. 
Some of these techniques are given as follows: 
(a) Class Taxonomy 
ll the developer creates only the classes for BOY, MAN and 
WOMAN, 

PERSON(sex:{ male,female),age:lnteger) 
>>> BOY(sex=male,ages 12) 
>>> MAN(sex=male,age > 12) 
>>> WOMAN(sex=female,age > 12) 

(where the classes are wriien in upper case, the slots in lower 
case, and the subclass relationship is denoted by >>>,) then the 
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omission checker will prompt him if there should be a class for 
persons who are female and not older than 12. 

(b) Relation Taxonomy 

Given a knowledge base as shown below, 
PERSON >>> MAN 

>>>WOMAN 

PARENT-OF(person,pern) 
V 
V 
V 

FATHER-OF(man,person) 
the omission checker will find that the taxonomy for PARENT-OF 
is incomplete because the PERSON class for the first argument of 
PARENT-OF seems to split into the MAN and WOMAN classes. 
Therefore, it will prompt the developer whether there should be 
another subrelation of PARENT-OF that holds between WOMAN 

(c) Omlsslon of Rules Or Facts 

Arguments of predicates may be associated with classes. By 
analyzing and comparing the arguments, the omission checker 
may detect that certain facts or rules for some classes are miss- 
ing. 

Consider the following knowledge base: 

and PERSON, namely, MOTHER-OF. 

PERSON>>>ADULT>>>WOMAN 
>>>MAN 

>>>CHILD >>>GIRL 
>>>BOY 

GO(passenger,from,to). 

TAKE(passenger,fligMfare). 

DEPARTMENT(department-name,floor). 

ADULT(x) A GO(x,austin.atlanta) 4 TAKE(x,f#7,150) 

CHILD(x) A GO(x,austin,atlanta) +TAKE(x,f#7,75) 

DEPARTMENT(man,P). 

DEPARTMENT(woman,l ). 

If we look at the rules defining TAKE, we know the domain for the 
first argument of TAKE is the union of ADULT and CHILD, namely, 
PERSON. However, the domain for the first argument of 
DEPARTMENT is the union of MAN and WOMAN, namely, 
ADULT. The idea of checking missing rules or facts is to find the 
minimal class that is the domain for some argument of a predicate. 
If two minimal classes are related by the subclass relationship, 
then the rule or fact set associated with the smaller minimal class 
is likely to be incomplete. For the above example, the fact Set for 
DEPARTMENT is incomplete. That is, the omission checker will 
prompt the developer on which floor the "child" department is. 
(d) Incomplete Slot Values 

There may be a set of typical objects for a slot of an object. For 
example, a room is a complex object that contains many other 
objects as parts. The mom can be represented by a schema which 
has a slot named "containing". A value of this slot is a set of other 
objects, typically such as table, chair, board, PC, etc. These typi- 
cal pa& of an object can be stored in the meta-knowledge base. 
When a specific object is created and it does not contain some of 
the typical parts, the omission checker will tell the developer. 

RULE REFINER 

A rule may be too general or too restrictive. Specific test cases will 
be chosen from the knowledge base to prompt the expert if the 
rule should apply to the test cases. Any "no" answer will indicate 
that the rule is too general, and more specific rules will be 

proposed. If he answers "yes" to all the test cases, it may indicate 
that the rule is too restrictive, and other test cases in sibling 
classes of the generalization hierarchy will be chosen. 

Consider a knowledge base given as follows: 
PERSON>>rMAN--MAN(Sam,22,USA) 

---MAN(Ted,42,USA) 
--MAN( Rayd2,France) 

>>>WOMAN---WOMAN(Sara,37,USA) 

where the schema for PERSON is 
PERSON(name,age,place-of-birth). 

If we have the following rule saying that every man can be the 
president of USA 

then the rule refiner will test the rule by presenting some instances 
of MAN and asking the developer if Sam, Ted and Ray can be the 
president of USA. The answer will be "no" for Sam and Ray, and 
'yes" for Ted. Since there are "no" answers, the rule is too 
general, so that the developer will change the rule to 

MAN(x) A rage(x,35) A place-of-birth(x,USA) 

MAN(x) 4 CAN-BE-PRESIDENT-OF-USA(x), 

4 CAN-BE-PRES1 DENT-OF-USA(X). 
Now, the rule refiner will test the modified rule by presenting an 
instance of WOMAN and ask if Sara can be the president of USA. 
The answer will be "yes". This means that the modified rule is too 
restrictive. Therefore, the rule will be changed to 

PERSON(x) A rage(x,35) A place-of-birth(x,USA) 
+ CAN-BE-PRESIDENT-OF-USA(x). 

The goal of the rule refiner is to help the developer refine his rules. 
Since this is an interactive process, a good and comprehensive 
user interface is required. 

CONTROL CHECKER 
As larger knowledge bases for complex applications are imple- 
mented, some software engineering methodology [Jacob and 
Froscher 19861 should be developed. One method is to partition a 
large knowledge base into smaller subsets of facts and rules. 
These subsets can be labeled by meaningful names such as ac- 
tivity names. Conversely, we can start with the activity names and 
then implement each activity by a set of facts and rules. 
The implicit execution model of a knowledge-based system is 
given as follows: A rule has a RHS and LHS. The rule will be fired 
if the LHS is satisfied by the knowledge base. When the rule is 
fired, the RHS tells the system to add, change or delete facts and 
objects. 
In an application, there may be "ordering" constraints (called con- 
trol constraints) among the activities. The control checker permits 
the developer to specify the control constraints, and then verify if 
rules in a knowledge base will be executed in a sequence that 
does not violate the control constraints. For example, in an office 
system, there are the activities for clearing and publishing papers. 
An ordering constraint is that a paper must be "cleared" before it is 
"published". Assume the activities are specified as follows: 
CLEARING-ACTIVIW: 

PUBLISHING-ACTIVIW: 

EVA will recognize that the control constraint is violated because 
there are no data dependencies between these two activities. That 
is, there are no RHS-literals in the first activity used in the LHS of 
the rule in the second activii. 

TEST CASE GENERATOR 

As discussed before, a knowledge base consisting of facts and 
rules can be represented by a connection graph. In the connection 
graph, there are two kinds of leaf nodes, namely, input nodes and 
output nodes. An input node is a node representing a fact that is 
connected to LHS-literals of some rules. An output node is a node 
representing a RHS-literal that is not connected to any LHS- 
literals. 

paper(X) A approved(X) +cleared(X). 

paper(>() A accepted()() +publish(X). 
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There are two ways to test the knowledge-based system. One ap- 
proach is to generate different sets of input nodes ( i  test 
cases) to exercise the system and observe data produced at the 
output nodes. The goal is to traverse each arc in the connection 
graph at least once. The input test cases must satisfy semantic 
constraints that are imposed on the system. 

The other approach is to specify requirements on data at the out- 
put nodes. Each requirement will be represented as a query. EVA 
will check that all input facts will satisfy all the queries. 

Consider an example where the speed of an engine is controlled 
by the position of a valve of a fuel system. A value of the position 
and a value of the speed are input and output data, respectively. 
We may generate different values of the position and observe the 
values of the speed. On the other hand, we can specify that the 
speed should fall within a certain range and then check if such a 
requirement can be fulfilled. 

ERROR LOCATOR 
The error locator is to locate "incorrect" rules which derive 
"incorrect" facts from input facts. For example, consider an adder 
that is specified by the following rule: 

input(1 ,N,V1) A input(S,N,VO) A adder(N) 
+ output(N, Vl+V2). 

The adder has two input ports 1 and 2. It takes values V1 and V2 
at the input ports, and produces the sum of the values at its output 
port. lf we have the following input facts for adder a 

input(1 ,a,10) 
iwt(2,aSO) 

output(a.60). 

input(l,N,Vl) A input(l,N,V2) A adder(N) 
+ output(N, Vl+V2), 

the system will produce the incorrect output 

To help the developer, the emr  kcator will present him the deduc- 
tion tree of the incorrect fact so that he can debug it. For the above 
example, the deduction tree uses only one fact, namely, 
input(l,a,lO), with the rule. This should give the developer the 
necessary hint to correct the incorrect rule. 

BEHAVIOR VERIFIER 
A system may be decomposed into many subsystems. A subsys- 
tem may be represented by a collection of facts and rules in the 
object shell. However, the subsystem must have external 
inpuVoutput interfaces to communicate with the outside world. For 
example, in the space shuttle flight software System, the naviga- 
tion controller is a subsystem that sits in a control loop, collects 
and analyzes data, and then sends control signals to the vehicle 
manipulator. 

The behavior of the subsystem is a description of relationships 
among the external inpuVwtpul interfaces and internal states of 
the subsystem. The subsystems are connected together to form 
the total system. The purpose of the behavior verifier is to prove 
that the intended behavior of the system can be derived from the 
behaviors of the subsystems and the description of their connec- 
tions. 

CONCLUSION 
This paper has described the architecture and functionality of 
EVA. It is evident that EVA provides a powerful means for 
representing knowledge about an application domain and for 
verifying that the knowledge is correct, consistent and complete. 
EVA increases the reliability of knowledge-based systems, speeds 
up their development, and assists in their continuing modification. 
The necessity for such validation tools will continue to grow as 
future knowledge-based systems play a more critical role in busi- 
ness, industry, government, and the sciences. 

the system should produce 

Now, if the adder is specified by the incorrect rule 

output(a,20). 
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